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Abstract
The R–R pair distribution functions of rare-earth metaphosphate glasses R(PO3)3 with R = La,
Nd, Er, Yb are determined from total x-ray and neutron scattering data by the reverse Monte
Carlo method. Characteristic features of the resulting pair distribution functions gRR(r) are
small peaks at ∼0.44 nm followed by large broad peaks at ∼0.63 and ∼0.85 nm and a smooth
feature at 1.1 nm. With the decrease of the radii of the R3+ ions by ∼0.023 nm if R is changed
from La to Yb, the peaks of the R–R distances shift to smaller lengths. Accordingly, the features
in the SRR(Q) factors shift to greater Q-values except for the first diffraction peaks which
appear at a constant position of ∼12 nm−1. The decrease in the area of the peak at 0.44 nm with
decreasing R radii is interpreted by considering the decreasing fractions of O atoms in terminal
P–O bonds, which possess two R first-neighbours. The resulting gRR(r) functions are modelled
with structures based on the monoclinic Yb(PO3)3 crystal. The characteristics of the series of
gRR(r) and SRR(Q) functions give support to the gTbTb(r) and STbTb(Q) data reported for a
magnetic difference neutron diffraction experiment on Tb metaphosphate glass.

1. Introduction

Investigations of the medium-range order (MRO) of oxide
glasses are still challenging and the determination of the
distribution of network-modifying ions in host glass matrices
is an important part of this work. Knowledge of the structural
arrangement of the metal ions is useful in order to understand
particular glass properties. For example, the nearest-neighbour
distances between the rare-earth sites in rare-earth doped
oxide glasses play an important role in the luminescence and
magnetic properties of the corresponding materials [1].

Diffraction experiments are suitable for extracting MRO
information and, thus, also structural information about atomic
distances that exceed lengths of ∼0.4 nm. But the use of
diffraction experiments for clarifying the MRO faces several
problems: only pair distance information on the level of the
sample average is determined, which is expressed by means
of probability functions. The binary rare-earth phosphate
glasses (R2O3)x(P2O5)1−x , whose R site distributions are
the subject of this paper, possess three different atomic
species. Consequently, six independent pair distribution

functions gi j(r) merge into the total g(r) function obtained
from a single diffraction experiment. Several contrast variation
techniques are capable of extracting partial gi j(r) functions.
Some methods have already been used to determine the R–R
correlations of binary rare-earth phosphate glasses. A first
large distance peak in the gRR(r) function at ∼0.56 nm,
indicating 7.9 neighbours, was found by neutron diffraction
(ND) with isomorphic substitution of Dy by Ho [2, 3]. The
Tb–Tb correlations of a Tb metaphosphate glass (x ∼= 0.25)
were extracted by the magnetic scattering fraction of neutrons
scattered on the paramagnetic Tb sites [4]. Tb–Tb distances of
∼0.6 nm were estimated from the position of the first scattering
peak in the STbTb(Q) structure factor. Q is the modulus of
the scattering vector with Q = (4π/λ) sin θ where λ is the
radiation wavelength and 2θ is the scattering angle. Recently,
another magnetic difference neutron diffraction experiment
was performed on the Tb metaphosphate glass, as well, where
it was possible to obtain the gTbTb(Q) function from the
STbTb(Q) data by Fourier transformation [5]. Tb–Tb distance
peaks were found at ∼0.39, ∼0.64 and ∼0.85 nm. The
anomalous change of the neutron scattering length of Sm was
used to extract the Sm–Sm correlations in neutron diffraction
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Table 1. Weighting factors (2 − δi j )ci bi b j/〈bi 〉2 of pair distances in
radial distribution functions calculated for the neutron (or x-ray)
diffraction data of R(PO3)3 glasses: the area of a distance peak of
atoms of sort j surrounding an atom of sort i with molar fraction ci

is related to the coordination number Nij where the corresponding
weighting factors are given in this table. The Kronecker symbol δi j is
unity in the case of i = j , otherwise zero. The scattering lengths bi

in the case of neutron scattering are replaced by the electron numbers
zi in the case of x-ray diffraction. (X-ray weighting factors depend
on Q and, therefore, the peak areas depend on the conditions of the
Fourier transformations. The weighting factors calculated by zi are
valid for Q = 0 and give approximate values.) The factors in this
table are not identical to the wi j (Q) introduced in section 3.

R atom Radiation i j = RR RP RO PP PO OO

La x-ray 1.395 0.734 0.392 0.290 0.309 0.247
La neutron 0.153 0.191 0.216 0.178 0.403 0.685
Yb x-ray 1.822 0.781 0.416 0.251 0.268 0.214
Yb neutron 0.312 0.259 0.292 0.160 0.363 0.615

experiments of an Sm phosphate glass (x ∼= 0.20) [6].
The gSmSm(Q) function of this ultraphosphate glass (x <

0.25) clearly differs from the gTbTb(Q) function of the Tb
metaphosphate glass [5], indicating the dependence of the
MRO on the R2O3 content. The contrast variation techniques
mentioned are difficult. The structural information of interest
is contained in a small fraction of the total neutron scattering
data and, thus, its extraction is sensitive to experimental and
correction problems.

On the other hand, the rare-earth ions are comparably
strong scatterers in x-ray diffraction (XRD) experiments. As
shown in table 1, the distance between a pair of R atoms
clearly possesses more weight than any other pair distance.
Differently, P–O and O–O distances possess most weight
in the total ND data. Thus, the use of information about
R–R correlations existing in XRD data can help us to obtain
reliable gRR(r) functions. The reverse Monte Carlo (RMC)
method [7] is suitable to extract the SRR(r) factors from the
total XRD intensities if reasonable constraints for the other pair
distributions improve the reliability of the approach. The RMC
simulations of the structures of Eu and Tb metaphosphate
glasses by Mountjoy et al [8] were performed using the XRD
data only. More promising in the RMC approach is the
combination of XRD and ND data which we have already
used in an earlier investigation of the structure of the La
metaphosphate glass [9].

Unlike in neutron diffraction, the conditions of XRD
experiments on R(PO3)3 glasses, i.e. the scattering power and
absorption of the R atoms, change little and monotonously
if the R species is changed. Thus, XRD is highly suitable
for studying those structural effects in the gRR(r) functions
which are caused by decreasing ionic radii with increase of the
electron numbers of the R species. The R–O distances decrease
by ∼0.023 nm and the R–O coordination numbers decrease
from ∼7 to ∼6 if R is changed from La to Yb [10–12]. RMC
will be used to determine the R–R correlations for a series
of R(PO3)3 glasses with selected R changing from La to Yb.
The earlier RMC runs [9] of the La(PO3)3 glass are repeated
using better XRD data [13] which are obtained at a synchrotron
beamline with high-energy photons. Other ND data [12, 14] of

R(PO3)3 glasses with R = Nd, Y, Yb are available for RMC
and are used together with the XRD data [12] obtained with
high-energy synchrotron radiation. The structures of R(PO3)3

glasses with R = Er and Y are assumed to be almost identical.
Er–O and Y–O, as well as, Er–P and Y–P distances were found
to be equal to each other [12].

2. Reverse Monte Carlo simulations

The reverse Monte Carlo method is used to extract the gRR(r)

functions from the results of two independent experiments,
XRD and ND. Three independent sets of experimental
scattering data of different contrast of the R sites are needed for
unequivocal determinations of the gRR(r) functions, e.g. by the
isomorphic substitution technique [2, 3]. Other constraints in
our RMC approach such as minimum separation distances and
coordination numbers are used to compensate for the deficit
of information. Moreover, the underlying three-dimensional
atomic configurations are a good check for the physical
reliability of the experimental scattering data. Different
variants of the combination of scattering data and the other
constraints exist. Here, the criterion for the successive
improvement of the atomic configurations in the cubic boxes
with periodic boundary conditions is the agreement between
the experimental and calculated structure factors, Sk(Q). Thus,
RMC is used as a fit of the experimental Sk(Q) data using the
Monte Carlo technique by minimization of a value χ2 which is
calculated with

χ2 =
∑

k,l

[Sk,exp(Ql) − Sk,mod(Ql)]2 (1)

k denotes the XRD and ND data by X and N and l indicates
the measuring points. A new position of an arbitrarily chosen
atom is accepted with χ2

m < χ2
m−1 in every case where

m − 1 denotes the move of the atom accepted just before.
The probability p = exp[−(χ2

m − χ2
0 )/s] determines which

of the unfavourable moves are accepted and χ2
0 is calculated

for the initial configuration. Value s has a similar effect as
the temperature factor. The RMC code used [9, 15] differs
from that of McGreevy and Pusztai [7] in the handling of
the coordination constraints. Maximum coordination numbers,
Ni j , can be defined for the individual sites but the instantaneous
Ni j s do not affect the calculation of parameter χ2.

Number densities of atoms, ρ0, varying from 66 to
68 nm−3 were calculated from mass densities measured for
the R(PO3)3 glasses with R = La, Nd, Y, Yb [9, 12, 14]. For
simplicity, the small variations of ρ0 or R2O3 content and the
small contaminations with crucible material [12] are neglected
in the RMC simulations. Values ρ0 of 67 nm−3 and R2O3

contents of 25 mol% are used. 3900 atoms, among them 300 R
atoms, fill the cubic model boxes with edge lengths of 3.88 nm.

The scattering data used for the different samples do not
possess identical quality. Unlike Q-ranges (Qmax of 223 or
280 nm−1) were realized in different XRD runs [12–14] on
the BW5 beamline of the synchrotron DORIS III (Hamburg,
Germany). Also the Q-ranges of the ND runs on different
instruments at ISIS (Chilton, UK) vary with Qmax of 500 nm−1

(LAD; R = La) [9], 250 nm−1 (SANDALS; Nd) [14] and
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Table 2. Minimum separation distances, Lmij , of pairs of atoms i
and j as used in the RMC runs. The distances are given in nm.

R atom i j = RR RP RO PP PO OO

La 0.370 0.342 0.218 0.270 0.130 0.222
Nd 0.370 0.338 0.214 0.270 0.130 0.222
Er 0.370 0.338 0.210 0.270 0.130 0.222
Yb 0.370 0.334 0.206 0.270 0.130 0.222

280 nm−1 (GEM; Y, Yb) [12]. Accordingly, the upper limits
Qmax of the SX(Q) and SN(Q) factors used in RMC differ
with 223 and 470 nm−1 for R = La, 223 and 250 nm−1 for
R = Nd and 280 nm−1 for the other S(Q) factors, respectively.
The RMC runs for the Er(PO3)3 glass make use of the SX(Q)

data of Er(PO3)3 glass and the SN(Q) of Y(PO3)3 glass. For
better comparability with the other three glasses modelled by
RMC, the additional information of the SX(Q) factor of the
Y(PO3)3 glass is not used in the RMC runs but it is compared
subsequently.

According to the knowledge of experimental results of
R(PO3)3 metaphosphate glasses [9–14] the glass structure is
formed of PO4 tetrahedra with oxygen atoms on the tetrahedral
corners and the P atoms in the centre. Numerous spectroscopic
studies as reviewed [16] have shown that these PO4 units
are connected with others via two corners for glasses of
x = ∼0.25. This behaviour implies the existence of infinite
chains and/or ring structures formed of the PO4 units where
the R3+ ions occupy interstitial voids. Experimental methods
for determination of the chain lengths or fractions of ring
structures for the materials studied are not known. The
structures of related crystals, the orthorhombic La(PO3)3 and
monoclinic Yb(PO3)3 polyphosphates [17, 18], are formed
of infinite chains of PO4 tetrahedra where the La3+ ions in
La(PO3)3 possess eight and the Yb3+ in Yb(PO3)3 possess
six oxygen neighbours. Oxygen atoms in the P–O–P bridges
(OB) are not first-neighbours of R3+ ions but every oxygen
atom (terminal OT) with one P neighbour coordinates one or
two R3+ sites. Constraints in accordance with these features
are introduced to obtain reasonable atomic configurations: (I)
POn units with n > 4 are suppressed, (II) oxygen atoms
coordinate a maximum of two P neighbours, (III) the PO4

units are allowed to form links through two corners to be
arranged in long chains and/or rings and are not allowed to
share edges, (IV) finally, minimum separation distances, Lmi j ,
of the different pairs of atoms are defined and shown in table 2.
These parameters are introduced to suppress unreasonable
short-range structures. The Lmi j values are chosen smaller
than the known lengths of the short-range order of the
same glasses [12] and the related crystal structures [17, 18].
The first-neighbour distances in acceptable RMC results are
determined by pair distributions from scattering data etc but
not by Lmi j parameters. The LmRP and LmRO lengths (table 2)
decrease with decreasing R–O distances. The LmRR lengths
were also varied in the first RMC runs starting with 0.43 nm
for R = La. But these values were reduced to a constant
0.37 nm to avoid any R-dependent effects and to allow for
R–R distances of 0.39 nm,which are known for the LaP3O9

crystal [17]. Essential changes of the functions after this
decrease of LmRR were not observed.

0

Figure 1. Comparison of the experimental structure factors from
x-ray and neutron diffraction of R(PO3)3 glasses [8, 11–13] with
those calculated from the resulting RMC configurations. The x-ray
data of the Y(PO3)3 glass were not used in RMC but the
corresponding SX(Q) factor is calculated from the RMC models
obtained by neutron data of the Y(PO3)3 glass and x-ray data of the
Er(PO3)3 glass. Both glasses, i.e. those with R = Y and Er, possess
identical structures. The upper curves are shifted for clarity.

The initial atomic configurations are taken from the earlier
RMC work of the La(PO3)3 glass [9]. Some artefacts of the
model structures such as PO3 groups (∼5%) are minor defects
which fraction could not be reduced further. The final functions
are averages of ten atomic configurations which were obtained
in intervals of >105 accepted moves of single atoms. The
experimental structure factors used in the RMC runs are well
approximated with the model functions calculated from the
final atomic configurations (cf figure 1). Also the model SX(Q)

function for R = Er agrees with the experimental XRD data
of the Y(PO3)3 glass. This SX(Q) factor was not used in
the RMC runs but the model function is calculated from those
RMC configurations which were obtained by the SN(Q) factor
of Y(PO3)3 glass and the SX(Q) factor of Er(PO3)3 glass. The
assumption of identical structures for Y(PO3)3 and Er(PO3)3

glasses is justified.
The definitions of the functions used are given shortly

before the results extracted from the RMC configurations are
presented. The partial radial distribution functions RDFi j(r)

change if atoms of species i or j are moved. Accordingly, the
corresponding partial Si j (Q) factors are calculated in each step
of RMC by fast Fourier transformation with

Si j (Q) = 1 +
∫ rmax

0
[RDFi j(r)/r − 4πrciρ0] sin(Qr) dr. (2)

It is assumed that significant correlations do not exist for
distances greater than rmax (rmax = 1.6 nm is used). ci is
the mole fraction of atomic species i . The model SX(Q)

and SN(Q) factors are calculated from the Si j(Q) factors for
determination of the current χ2-values.

The resulting RDFRR(r) functions of the final RMC
configurations are used to determine the R–R coordination

3
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Figure 2. Partial structure factors Si j (Q) multiplied with the x-ray weighting factors wi j (Q) (a) and the pair distribution functions gi j (r) (b)
obtained by RMC for the La(PO3)3 glass. The upper curves are shifted for clarity.

numbers and mean separation lengths of the distance peaks.
For an illustration of the peaks it is more convenient to show
correlation functions Ti j(r) or pair distribution functions gi j(r)

which are defined with

Ti j(r) = RDFi j(r)/r = 4πrgi j(r)ciρ0. (3)

These functions increase only linearly or are constant in the
limit of great distances. When considering the Ti j(r) or gi j(r)

functions it must be remembered that relations between the
peak areas are not equivalent to relations between the numbers
of atomic neighbours.

3. Results

The contribution of the SRR(Q) factor to the total SX(Q)

data is shown before the final series of R–R correlations for
the four different R atoms. The weighted partial wi j (Q) ·
Si j(Q) functions which compose the total SX(Q) factor of the
La(PO3)3 glass (on top of figure 1) are shown in figure 2(a).
The weighting factors wi j(Q) are given with wi j(Q) = (2 −
δi j)ci c j fi (Q) f j (Q)/〈 f 〉2 in Faber–Ziman notation [19] where
〈 f 〉 is the compositional average of the fi (Q) atomic scattering
amplitudes (polynomial approximation of Waasmaier and
Kirfel [20]). δi j is the Kronecker symbol which is unity in the
case of i = j , otherwise zero. Though the La atoms are strong
scatterers for x-rays, the corresponding wLaLa(Q) factors are
small with 11% for Q = 0 due to the small La fraction of
1/13 (14% for wYbYb(Q)). Nevertheless, the partial wLaLa(Q)·
SLaLa(Q) factor is the main contribution to the shoulder at
∼12 nm−1 in the SX(Q) factor. Also the, SPP(Q), SPO(Q) and
SOO(Q) factors contribute to this peak while the SLaP(Q) and
SLaO(Q) factors show minima at this position. Obviously, the P
and O sites produce the same character of MRO as the La sites
do. The P and O atoms surround the network holes occupied
by the La3+ ions and, thus, accentuate the MRO of the La
sites. The oscillations following the first peak in the SLaLa(Q)

factor are small and of small periods. Stronger oscillations
occur in the SLaP(Q), SLaO(Q) and SPO(Q) factors even for
greater Q. They exhibit longer periods due to the narrow
La–P, La–O and P–O first-neighbour peaks which exist in the

Figure 3. R–R pair distribution functions gRR(r) obtained by RMC
for the rare-earth metaphosphate glasses R(PO3)3 with R = La, Nd,
Er(Y), Yb. The upper curves are shifted for clarity.

corresponding pair distributions (figure 2(b)). The La–La pair
distribution function gLaLa(r) is comparably smooth. It is noisy
due to small La fractions existing in the model configurations.
Three La–La distance peaks are identified at ∼0.47, ∼0.65 and
∼0.87 nm which are followed by a smooth feature at ∼1.1 nm.

The SLaLa(Q) and gLaLa(r) functions are found to be
similar to those of all rare-earth metaphosphate glasses studied.
The peaks in the gRR(r) functions shift to smaller lengths
with decreasing radius of the R3+ ions (figure 3) which is
a reasonable behaviour. The area of the peak at ∼0.44 nm
decreases, as well, which is due to a decrease of R–O
coordination numbers NRO [10–12]. The NRO values of the
R(PO3)3 metaphosphate glasses of the larger R3+ ions in the
lanthanide series are significantly greater than six [9–14]. But
only six OT are available to coordinate an R3+ ion [21, 22].
Assuming that OB do not participate in the coordination of the
R sites, the R3+ ions have to share some OT neighbours and
R–R distances of ∼0.44 nm attributable to R–OT–R linkages
occur. The peak at ∼0.44 nm appears very small for the
Yb(PO3)3 glass. It should vanish completely in the case of
NRO = 6. The distances of ∼0.63 nm were attributed to
separations between two R3+ ions which coordinate different
OT sites of a common PO4 neighbour [5, 13]. This

4
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Table 3. Coordination numbers (NRRm) and mean distances (rRRm) of the first peaks numbered by m which are identified in the pair
distribution functions gRR(r) shown in figure 3. Lower and upper limits rmax m−1 and rmax m for determination of the values NRRm are estimated
from the minima positions in the gRR(r) functions. Parameters NRO and rRO are taken from a previous paper [12]. All lengths are given in nm.

R atom NRO rRO NRR1 rRR1 rmax 1 NRR2 rRR2 rmax 2 NRR3 rRR3 rmax 3

La 6.9 ± 0.3 0.248 ± 0.002 1.26 ± 0.4 0.47 ± 0.02 0.516 7.90 ± 0.2 0.65 ± 0.01 0.760 9.6 ± 0.3 0.87 ± 0.02 0.966
Nd 6.9 ± 0.3 0.241 ± 0.002 1.18 ± 0.4 0.45 ± 0.02 0.506 7.70 ± 0.2 0.64 ± 0.01 0.750 9.2 ± 0.3 0.86 ± 0.02 0.956
Er (Y) 6.5 ± 0.3 0.226 ± 0.002 0.78 ± 0.3 0.43 ± 0.02 0.484 7.14 ± 0.2 0.62 ± 0.01 0.726 8.9 ± 0.3 0.84 ± 0.02 0.930
Yb 6.5 ± 0.3 0.225 ± 0.002 0.38 ± 0.3 0.44 ± 0.02 0.482 7.10 ± 0.2 0.61 ± 0.01 0.716 8.8 ± 0.3 0.83 ± 0.02 0.920

Table 4. Illustration of the relations between the R–O coordination numbers, the fractions of oxygen atoms (OT,n , OB,n) with different
numbers n of R neighbours and the values NRRm for the La(PO3)3 and Yb(PO3)3 crystals [17, 18], a model (m7) of idealized behaviour with
NRO = 7 and the RMC models of the La(PO3)3 and Yb(PO3)3 glasses. Values NRO given in parentheses were obtained from Gaussian
fits [12].

Sample NRO OT OB OT,0 OT,1 OT,2 OB,0 OB,1 NRR1 NRR2 NRR3

c-La(PO3)3 8.0 0.666 0.333 0 0.444 0.222 0.333 0 2.0 12.0 6.0
m7-model 7.0 0.666 0.333 0 0.555 0.111 0.333 0 1.0 — —
c-Yb(PO3)3 6.0 0.666 0.333 0 0.666 0 0.333 0 0 8.0 12.0
RMC-La(PO3)3 6.3 (6.9) 0.682 0.318 0.058 0.592 0.032 0.277 0.041 1.3 7.9 9.6
RMC-Yb(PO3)3 5.8 (6.5) 0.684 0.316 0.078 0.598 0.008 0.281 0.035 0.4 7.1 8.8

interpretation is not exact: the number of Yb neighbours at
these distances is eight in the Yb(PO3)3 crystal [18] but only
six of these Yb are connected with the central Yb site via the
edge of a PO4 tetrahedron. The distance peak at ∼0.85 nm
belongs to R sites which are separated by two or more PO4

units. The numbers of R neighbours and the mean distances
belonging to the peaks at ∼0.44, ∼0.63 and ∼0.85 nm are
determined and shown in table 3. Estimated uncertainties of
NRRm and rRRm are given where the arbitrariness in choosing
the limits rmax m (minima between the peaks), the use of x =
0.25 instead of exact compositions and systematic errors of
the experimental structure factors (normalization deficits etc)
are taken into account. The distances as well as the numbers
of R neighbours belonging to each R–R peak decrease with
decreasing R–O separations. Both tendencies would change
the packing densities in the opposite direction but here they
compensate each other and maintain constant packing densities
such as found for the metaphosphate glasses of the different R
species [12].

Figure 4 shows the SRR(Q) factors belonging to the
gRR(Q) functions given in figure 3. The functions change
uniformly with decreasing R–O distances, as well. The
features in the range Q > 20 nm−1 shift continuously to
greater Q as expected for shorter R–R distances if R is changed
from La to Yb. On the other hand, the first diffraction peaks
in the SRR(Q) data do not follow this shift but they appear at
constant positions of ∼12 nm−1.

Before the functions gRR(r) and SRR(Q) presented in
figures 3 and 4 are discussed, it should be noticed that the
RMC configurations do not accomplish the expectations in
all details: fractions of ∼5% of the P atoms have only
three oxygen neighbours. Accordingly, the lengths of the
chains formed from corner-connected PO4 groups possess
finite size, while infinite chains and/or cyclic structures are
expected [16–18]. The oxygen sites with different numbers
of neighbours illustrate the problem. Table 4 compares the
fractions of these oxygen sites (OT, OB) possessing different

Figure 4. R–R partial structure factors SRR(Q) which correspond to
the gRR(r) functions shown in figure 3. The upper curves are shifted
for clarity.

numbers of R neighbours for crystal structures and RMC
models. The values of the Yb(PO3)3 crystal [18] with NRO = 6
show that all OT possess one R neighbour and all OB atoms do
not coordinate R sites. Since OT are not shared between R
neighbours R–R pairs of short distances (NRR1) do not exist.
For the La(PO3)3 crystal [17], one third of the OT (fraction
OT,2) is shared by R–R pairs which leads to some short R–R
distances (NRR1 = 2). A mixed structure (m7) with NRO = 7
is added to illustrate that increasing fractions of OT,2 and NRR1

are due to the increase of NRO according to NRR1 = NRO − 6.
Actually, a value NRR1 of 0.4 is obtained for the Yb(PO3)3

glass where a value of 0.5 is calculated according to the NYbO

value of 6.5. A value NRR1 of 1.3 is obtained for the La(PO3)3

glass which is close to 0.9 as calculated for NLaO of 6.9.
Table 4 shows that the values NRO found in the RMC

models are slightly less than those obtained from peak
fitting [12]. The total fractions of the OT and OB sites are
close to those expected at metaphosphate composition and
found in the related crystal structures [17, 18]. The expected
oxygen sites OT,1 and OB,0 dominate the RMC configurations.

5
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Figure 5. Total correlation functions (x-rays) of the R(PO3)3 glasses
studied [12]. P–O, R–O, O–O, P–P and R–P first-neighbour
distances are clearly identified. The peak at ∼0.48 nm is mainly
attributed to R–O second-neighbours. The broad peaks at ∼0.65 and
∼0.85 nm are assumed to be mainly due to R–R correlations.

But some unreasonable details appear: unfavourable OT,0

and OB,1 sites exist while the fraction of expected OT,2 is
comparably small. This behaviour contradicts the needs of
local charge compensation. For example, sharing of an
oxygen by one P and two R sites (OT,2) is more probable
than sharing by two P and one R sites (OB,1). Thus, a
significant density of defects exists in the RMC models of the
R(PO3)3 glasses. The structural behaviour of the individual
atoms is not well constrained in the diffraction data and the
corresponding details of the RMC models are not useful for
further analysis. Results closer to the expected behaviour
were obtained by molecular dynamics (MD) simulations of
Tb metaphosphate glass [23]. All O neighbours of the
Tb3+ ions are OT sites. The local order of atoms in MD
models seems better constrained due to the effects of the pair
potentials. Nevertheless, the main features of metaphosphate
glasses (chains of two-fold corner-connected PO4 units which
coordinate R3+ ions by their two OT corners) are reproduced
in our RMC models. Accordingly, the corresponding six
pair correlations are supposed to reflect the main structural
characteristics of R(PO3)3 glasses, which justifies further
discussion of the resulting gRR(r) functions. Support for
this interpretation comes from inspecting the total TX(r)

functions [12] of the glasses studied (figure 5): the peaks
at ∼0.65 and ∼0.85 nm are at similar positions to peaks
in the gRR(r) functions (figure 3, table 3). But direct
separation of these R–R peaks from the total TX(r) data is not
possible. Determinations of lengths and coordination numbers
by peak fitting were made for the P–O, R–O and O–O first-
neighbours [12]. The separation of overlapping R–O and
O–O peaks was possible due to the change of contrast of
TX(r) and TN(r) data. Even for visible P–P and strong R–
P peaks (figure 5) only rough estimations of the coordination
numbers can be given [12]. This problem is due to overlaps
with unknown P–O and O–O second-neighbour correlations.
The first R–R peak at ∼0.44 nm interferes with R–O second-
neighbour correlations.

4. Discussion

In a comparison of our gRR(r) and SRR(Q) functions with
those mentioned in the introduction, best agreement is achieved
with the behaviour of the gTbTb(r) and STbTb(Q) data from
magnetic difference neutron diffraction [5] if it is assumed
that the Tb–Tb correlations can be interpolated from the Nd–
Nd and Er–Er correlations presented here. The ratio of Tb
neighbours for the Tb–Tb peaks at 0.39 and 0.64 nm was
reported to be ∼0.07 [5]. The corresponding ratios of our
RMC models of the R(PO3)3 glasses range from 0.05 to 0.16
for R = Yb and La, respectively (table 3). The distances from
RMC (∼0.44 nm) are slightly greater than the smallest Tb–
Tb separation reported in [5] (0.39 nm). This difference can
be attributed to uncertain definitions of rmax 1 (table 3) and the
effects of R–O second-neighbour distances of similar lengths.
A third peak at ∼0.85 nm was also found in the reported
Tb–Tb correlations [5] but the number of corresponding
neighbours is not given [5]. The experimental results for the Tb
metaphosphate glass [5] and the RMC work here presented are
confirmed by the findings of an MD simulation [23] where Tb–
Tb neighbours are detected at ∼0.4 nm in front of a broad peak
at ∼0.6 nm. The peak at ∼0.4 nm is attributable to separations
between Tb sites which coordinate a common OT neighbour.
Unfortunately, the MD work [23] does not report any Tb–Tb
coordination numbers and information on the third Tb–Tb peak
is missing.

Sequences of peak positions are useful to differentiate
whether rare-earth sites are arranged at random or if they
possess a special order. From the length ratio

√
3 of the

first two Ca–Ca distances of ∼0.38 and ∼0.65 nm, Gaskell
et al [24] concluded that there was a crystal-like order of
the Ca sites in Ca metasilicate glass. Since the R–R peak
at ∼0.4 nm is a small effect which is nearly negligible for
the Yb(PO3)3 glass, the peaks following this distance have
to be considered in comparison with different MRO models.
In earlier work [9, 12], we used a simple approach for the
R site distributions in rare-earth metaphosphate glasses: R-
centred spheres were assumed to be arranged in the sense of
a close-packed random order. Blétry [25] used this model for
the MRO of simple network glasses. The model of spheres is
applicable if all R environments possess equal properties, i.e. if
equal distances exist for the first R neighbours in an arbitrary
direction from a given R site. This behaviour is possible at
a metaphosphate composition with NRO = 6: each PO4 unit
connects two R sites via its two OT [16]. The R-centred spheres
are thought to be formed from R3+ ions with a shell of PO4

units belonging half to one and half to the other R neighbour.
The diameter of spheres is less than twice the R–P distance
because a partial interpenetration of spheres is possible. The
small effect of OT possessing two R neighbours is neglected.
The position of the first peak in the SRR(Q) factor is related to
the diameter D of the spheres with Q1 = ∼2π(

√
2/3D) =

∼7.7/D. This equation is valid over a great range of packing
densities [25]. Distance

√
2/3D is known as the separation of

111-planes of a face-centred cubic (fcc) lattice. The prominent
R–R first-neighbour distance of ∼0.63 nm, the distance of
closest contact, is related to the position (∼12 nm−1) of the
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Figure 6. Comparisons of the gRR(r) functions obtained from RMC for R(PO3)3 glasses with R = Yb (a) and La (b) (hollow circles) with the
gRR(r) functions calculated for a random packing of soft spheres (dots) and gRR(r) functions calculated from R–R distances of related crystal
structures: monoclinic Yb(PO3)3 crystal [18] (solid lines), orthorhombic La(PO3)3 crystal [17] (dashed line), hexagonal order of Yb sites
(dash–dotted line). Mean diameters of spheres of 0.58 and 0.61 nm and packing fractions of 0.54 and 0.62 are used for the model of random
packing of R-centred spheres for R = Yb and La, respectively.

first maximum in SRR(Q) according to the given equation. The
peak positions found for the RMC models of the glasses obey
the relation of close-packed random order (cf figures 3 and 4).

The gRR(r) function of a close-packed random order of
spheres can be modelled easily. Results of a computer-aided
simulation are used with 10 000 hard spheres in a cubic model
box [26]. The number density is chosen with 5.2 nm−3

according to that of the R sites in the R(PO3)3 glasses. The
diameters of the spheres are varied by ±10% within the
framework of a triangular distribution in order to simulate
soft spheres. That broadens the peak of first-neighbours.
The mean diameters, i.e. the packing fractions, were adjusted
so that the first-neighbour peak of the model fits that at
∼0.63 nm in the RMC gRR(r) functions. The resulting R–R
correlations are compared in figure 6 for R = Yb and La. The
model does not reproduce the peaks at ∼0.44 nm, which is
a shortcoming for gLaLa(r) but negligible for gYbYb(r). The
model peaks at ∼0.63 nm are still narrow and correspond to
more R neighbours than found by RMC. The first diffraction
peak of the close-packed random order of spheres appears at
∼12 nm−1 as expected [25]. But distance peaks of ∼0.85 nm
found by RMC are missing in the model gRR(r) functions
from random packing. Only smooth contributions exist in this
range. The subsequent smooth feature at ∼1.1 nm is somehow
reproduced. Similar to the results obtained for the Ca–Ca
correlations in Ca metasilicate glass [24], a random packing
of the modifier sites is not an appropriate model though the
first prominent R–R distance at ∼0.63 nm agrees with the
random packing model. A small shift detected for the first
feature in the total SX(Q) factors to greater Q by ∼1 nm−1 if
R changing from La to Yb was interpreted with the decrease of
R–R distances [12] according to the random packing model.
Here it is found that the first peaks in the SRR(Q) factors
possess constant positions independent of the R species and
it is suggested that the shift of the shoulder at ∼12 nm−1 in
front of the main maximum in the SX(Q) factors results from
changes of the weighting factors.

The gYbYb(r) data from RMC are compared with those
calculated from the crystal structure of Yb(PO3)3 [18]

(figure 6(a)). The distribution of the particular Yb–Yb
distances of the crystal structure is convoluted with a Gaussian
function whose width is adjusted to yield a good fit of the peak
at 0.61 nm. Actually, both peaks at 0.61 and 0.83 nm possess
similar shape and position for the structures of the glass (RMC
result) and the related crystal [18]. Clear differences exist for
distances >1.0 nm where the Yb–Yb correlations of the glass
are smeared out. It is difficult to identify the reason for the
special MRO of the Yb sites in the glass which is similar to
that of the monoclinic crystal [18]. The arrangement of Yb
sites of the crystal structure can be simplified to hexagonal
symmetry and the corresponding gYbYb(r) function gives a
good agreement with the RMC result, as well (figure 6(a)).
A remarkable feature is the greater number of Yb neighbours
at ∼0.83 nm if compared with that at ∼0.61 nm (crystal
and glass; cf table 3). It is assumed that, due to the needs
of the accommodation of the (PO3)∞ chains, the number of
first Yb neighbours at the contact distance is limited where
the greatest peak exists in the case of random packing. In
section 3 it is mentioned that the majority of Yb neighbours
at ∼0.63 nm is connected to the central Yb site via the edge
of a PO4 tetrahedron. This behaviour limits the number
of Yb neighbours at ∼0.63 nm. The small number of Yb
neighbours at ∼0.61 nm is compensated by a second shell at a
slightly greater distance (∼0.83 nm) formed of even more Yb
neighbours.

The gRR(r) functions (RMC) do not show great changes
in character with change from Yb to La except for the intensity
of the peak at ∼0.44 nm. The model gYbYb(r) function
calculated from the structure of the monoclinic Yb(PO3)3

crystal [18] also shows a similarity with the gLaLa(r) data
from RMC (figure 6(b)). A comparison is made with the
Yb–Yb distances of the Yb(PO3)3 crystal [18] because atomic
structures of the other known monoclinic R(PO3)3 forms of
symmetry P21/c are not reported. The small difference of
the peak positions to 0.65 and 0.87 nm is due to the greater
size of the La3+ ions. Thus, the gRR(r) functions of all rare-
earth metaphosphate glasses show similarity with the R–R
distances of the monoclinic form regardless of the size of the
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R3+ ions. The same relation was found by comparison of
the x-ray scattering intensities obtained for powders of the
Gd(PO3)3 glass and the monoclinic Gd(PO3)3 crystal [12].
Ilieva et al [27] have shown that the infrared (IR) spectra of
the metaphosphate glasses with R = La, Pr, Nd, Gd are similar
with those of the monoclinic but not the orthorhombic crystal
forms. Moreover, it was found [27] that recrystallization
of metaphosphate glasses with R = La, Pr, Nd, Gd, Dy, Y
leads first to the monoclinic forms. These forms appear
metastable for the R(PO3)3 of the larger R3+ ions with R from
La to Gd where stable orthorhombic forms [17] exist. The
gLaLa(r) function is calculated with the La–La distances of the
orthorhombic La(PO3)3 crystal [17] and compared with the
RMC result, as well. The orthorhombic form [17] shows an
La–La peak at 0.42 nm due to shared OT sites; this distance is
a little shorter than from RMC. The subsequent La–La peak
at ∼0.72 nm is ‘out of phase’ with the peaks of the RMC
result and a peak at ∼0.87 nm is missing. The orthorhombic
La(PO3)3 crystal [17] shows a strange feature: the LaO8

polyhedron shares an edge with a PO4 unit. The OT atoms
of this edge are shared with neighbouring LaO8 polyhedra.
This is a very special arrangement which could only marginally
contribute to a glass structure.

5. Conclusions

(1) The reverse Monte Carlo method was successfully
used to extract partial gRR(r) and SRR(Q) functions
of rare-earth metaphosphate glasses R(PO3)3 (R = La,
Nd, Er, Yb) where the x-ray diffraction data are the
main source of information. Uniform changes of the
features in the resulting functions for R = La–Yb confirm
the reliability of the approach. The results agree
well with those from magnetic difference diffraction
experiments and molecular dynamics methods reported
for Tb metaphosphate glass.

(2) The gRR(r) functions show three peaks at ∼0.44, ∼0.63
and ∼0.85 nm with numbers ∼1, ∼7.5 and ∼9 of
R neighbours, respectively. The corresponding R–R
coordination numbers and distances decrease slightly with
decreasing size of the R3+ ions if R is changed from La
to Yb. Accordingly, the peaks of the SRR(Q) shift to
greater Q. An exception is the constant position of the
first diffraction peak at ∼12 nm−1.

(3) R–R distances of ∼0.44 nm are due to a small fraction of
pairs of R3+ ions sharing oxygen neighbours in terminal
P–O bonds. The tendency for sharing oxygens is weak
for glasses with R = Er and Yb. The effect increases for
glasses with the larger R3+ ions such as La3+ and Nd3+.

(4) The positions of the prominent first distance peak at
∼0.63 nm and the first diffraction peak at ∼12 nm−1

obey the relation for a random packing of R-centred
spheres. However, even the second peak of R–R distances
at ∼0.85 nm is not described by this simple model.

(5) The R–R distances at ∼0.63 nm and ∼0.85 nm are
well modelled by the Yb–Yb distances of the monoclinic
Yb(PO3)3 crystal. Obviously, constraints on the R site

distributions which are inherent to this special crystalline
form are also effective in the glass structures.
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